Alper, B. S. (2023). Reflections on defining a standard for computable
expression of scientific knowledge: What teach us yoda can [Journal
Article]. Learn Health Syst, 7(1), e10312. https://doi.org/10.1002/lrh2.10312
Andersen, K. M., Bates, B. A., Rashidi, E. S., Olex, A. L., Mannon, R.
B., Patel, R. C., Singh, J., Sun, J., Auwaerter, P. G., Ng, D. K.,
Segal, J. B., Garibaldi, B. T., Mehta, H. B., Alexander, G. C., &
National, C. C. C. C. (2022). Long-term use of immunosuppressive
medicines and in-hospital COVID-19 outcomes: A retrospective cohort
study using data from the national COVID cohort collaborative [Journal
Article]. Lancet Rheumatol, 4(1), e33–e41. https://doi.org/10.1016/S2665-9913(21)00325-8
Ankan, A., Wortel, I. M. N., & Textor, J. (2021). Testing graphical
causal models using the r package "dagitty" [Journal Article]. Curr
Protoc, 1(2), e45. https://doi.org/10.1002/cpz1.45
Anzalone, A. J., Horswell, R., Hendricks, B. M., Chu, S., Hillegass, W.
B., Beasley, W. H., Harper, J. R., Kimble, W., Rosen, C. J., Miele, L.,
et al. (2023). Higher hospitalization and mortality rates among
SARS-CoV-2-infected persons in rural america. The Journal of Rural
Health, 39(1), 39–54. https://doi.org/10.1111/jrh.12689
Benchimol, E. I., Smeeth, L., Guttmann, A., Harron, K., Moher, D.,
Petersen, I., Sorensen, H. T., Elm, E. von, Langan, S. M., &
Committee, R. W. (2015). The REporting of studies conducted using
observational routinely-collected health data (RECORD) statement
[Journal Article]. PLoS Med, 12(10), e1001885. https://doi.org/10.1371/journal.pmed.1001885
Bradwell, K. R., Wooldridge, J. T., Amor, B., Bennett, T. D., Anand, A.,
Bremer, C., Yoo, Y. J., Qian, Z., Johnson, S. G., Pfaff, E. R., et al.
(2022). Harmonizing units and values of quantitative data elements in a
very large nationally pooled electronic health record (EHR) dataset.
Journal of the American Medical Informatics Association,
29(7), 1172–1182. https://doi.org/10.1093/jamia/ocac054
Casiraghi, E., Malchiodi, D., Trucco, G., Frasca, M., Cappelletti, L.,
Fontana, T., Esposito, A. A., Avola, E., Jachetti, A., Reese, J., Rizzi,
A., Robinson, P. N., & Valentini, G. (2020). Explainable machine
learning for early assessment of COVID-19 risk prediction
in emergency departments. IEEE Access, 8,
196299–196325. https://doi.org/10.1109/access.2020.3034032
Casiraghi, E., Wong, R., Hall, M., Coleman, B., Notaro, M., Evans, M.
D., Tronieri, J. S., Blau, H., Laraway, B., Callahan, T. J., Chan, L.
E., Bramante, C. T., Buse, J. B., Moffitt, R. A., Stürmer, T., Johnson,
S. G., Shao, Y. R., Reese, J., Robinson, P. N., … Wilkins, K. J. (2023).
A method for comparing multiple imputation techniques: A case study on
the u.s. National COVID cohort collaborative. Journal
of Biomedical Informatics, 139, 104295. https://doi.org/10.1016/j.jbi.2023.104295
Caton, S., & Haas, S. (2020). Fairness in machine learning: A
survey. [Journal Article]. arXiv. https://doi.org/10.48550/arXiv.2010.0405
Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987).
A new method of classifying prognostic comorbidity in longitudinal
studies: Development and validation. Journal of Chronic
Diseases, 40(5), 373–383. https://doi.org/10.1016/0021-9681(87)90171-8
Chollet, F. (2021). Deep learning with python. Simon; Schuster.
Cutter, S., Ash, K., & Emrich, CT. (2014). The geographies of
community disaster resilience [Journal Article]. Global
Environmental Change, 29(Nov 1), 65–77. https://doi.org/10.1016/j.gloenvcha.2014.08.005
Dong, X., Li, J., Soysal, E., Bian, J., DuVall, S. L., Hanchrow, E.,
Liu, H., Lynch, K. E., Matheny, M., Natarajan, K., et al. (2020).
COVID-19 TestNorm: A tool to normalize COVID-19 testing names to LOINC
codes. Journal of the American Medical Informatics Association,
27(9), 1437–1442. https://doi.org/10.1093/jamia/ocaa145
Elm, E. von, Altman, D. G., Egger, M., Pocock, S. J., Gotzsche, P. C.,
Vandenbroucke, J. P., & Initiative, S. (2014). The strengthening the
reporting of observational studies in epidemiology (STROBE) statement:
Guidelines for reporting observational studies [Journal Article].
Int J Surg, 12(12), 1495–1499. https://doi.org/10.1016/j.ijsu.2014.07.013
Franklin, J. M., Lin, K. J., Gatto, N. M., Rassen, J. A., Glynn, R. J.,
& Schneeweiss, S. (2021). Real-world evidence for assessing
pharmaceutical treatments in the context of COVID-19 [Journal Article].
Clin Pharmacol Ther, 109(4), 816–828. https://doi.org/10.1002/cpt.2185
Franklin, J. M., Platt, R., Dreyer, N. A., London, A. J., Simon, G. E.,
Watanabe, J. H., Horberg, M., Hernandez, A., & Califf, R. M. (2022).
When can nonrandomized studies support valid inference regarding
effectiveness or safety of new medical treatments? [Journal Article].
Clin Pharmacol Ther, 111(1), 108–115. https://doi.org/10.1002/cpt.2255
Fu, S., Leung, L. Y., Raulli, A.-O., Kallmes, D. F., Kinsman, K. A.,
Nelson, K. B., Clark, M. S., Luetmer, P. H., Kingsbury, P. R., Kent, D.
M., & Liu, H. (2020). Assessment of the impact of EHR
heterogeneity for clinical research through a case study of silent brain
infarction. BMC Medical Informatics and Decision
Making, 20(1). https://doi.org/10.1186/s12911-020-1072-9
Gold, S., Batch, A., McClure, R., Jiang, G., Kharrazi, H., Saripalle,
R., Huser, V., Weng, C., Roderer, N., Szarfman, A., et al. (2018).
Clinical concept value sets and interoperability in health data
analytics. AMIA Annual Symposium Proceedings, 2018,
480. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371254
Gold, S., Lehmann, H., Schilling, L., & Lutters, W. (2021).
Practices, norms, and aspirations regarding the construction,
validation, and reuse of code sets in the analysis of real-world data.
medRxiv, 2021–2010. https://doi.org/10.1101/2021.10.14.21264917
Griffith, G. J., Morris, T. T., Tudball, M. J., Herbert, A., Mancano,
G., Pike, L., Sharp, G. C., Sterne, J., Palmer, T. M., Davey Smith, G.,
Tilling, K., Zuccolo, L., Davies, N. M., & Hemani, G. (2020).
Collider bias undermines our understanding of COVID-19 disease risk and
severity. Nature Communications, 11(1), 5749. https://doi.org/10.1038/s41467-020-19478-2
Haendel, M. A., Chute, C. G., Bennett, T. D., Eichmann, D. A., Guinney,
J., Kibbe, W. A., Payne, P. R. O., Pfaff, E. R., Robinson, P. N., Saltz,
J. H., Spratt, H., Suver, C., Wilbanks, J., Wilcox, A. B., Williams, A.
E., Wu, C., Blacketer, C., Bradford, R. L., Cimino, J. J., … N3C
Consortium, the. (2020). The National COVID Cohort
Collaborative (N3C): Rationale, design, infrastructure, and
deployment. Journal of the American Medical Informatics
Association, 28(3), 427–443. https://doi.org/10.1093/jamia/ocaa196
Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H.
(2009). The elements of statistical learning: Data mining,
inference, and prediction (Vol. 2). Springer.
Hernan, M. A., & Robins, J. M. (2016). Using big data to emulate a
target trial when a randomized trial is not available [Journal Article].
Am J Epidemiol, 183(8), 758–764. https://doi.org/10.1093/aje/kwv254
Islam, J. Y., Madhira, V., Sun, J., Olex, A., Franceschini, N., Kirk,
G., & Patel, R. (2022). Racial disparities in COVID-19 test
positivity among people living with HIV in the united states [Journal
Article]. Int J STD AIDS, 33(5), 462–466. https://doi.org/10.1177/09564624221074468
Kharrazi, H., Chi, W., Chang, H.-Y., Richards, T. M., Gallagher, J. M.,
Knudson, S. M., & Weiner, J. P. (2017). Comparing population-based
risk-stratification model performance using demographic, diagnosis and
medication data extracted from outpatient electronic health records
versus administrative claims. Medical Care, 55(8),
789–796. https://doi.org/10.1097/MLR.0000000000000754
Klein, J. T. (1996). Crossing boundaries knowledge,
disciplinarities, and interdisciplinarities [Book]. University
Press of Virginia. https://www.google.com/books/edition/Crossing_Boundaries/bNJvYf3ROPAC
Kleinberg, J. M., Mullainathan, S., & Raghavan, M. (2016). Inherent
trade-offs in the fair determination of risk scores. CoRR,
abs/1609.05807. https://doi.org/10.48550/arXiv.1609.05807
Kuehne, F., Jahn, B., Conrads-Frank, A., Bundo, M., Arvandi, M., Endel,
F., Popper, N., Endel, G., Urach, C., Gyimesi, M., Murray, E. J.,
Danaei, G., Gaziano, T. A., Pandya, A., & Siebert, U. (2019).
Guidance for a causal comparative effectiveness analysis emulating a
target trial based on big real world evidence: When to start statin
treatment [Journal Article]. J Comp Eff Res, 8(12),
1013–1025. https://doi.org/10.2217/cer-2018-0103
Li, C., Alsheikh, A. M., Robinson, K. A., & Lehmann, H. P. (2023).
Use of recommended real-world methods for electronic health record data
analysis has not improved over 10 years. medRxiv. https://doi.org/10.1101/2023.06.21.23291706
Lundberg, S. M., Erion, G. G., & Lee, S.-I. (2018). Consistent
individualized feature attribution for tree ensembles. arXiv. https://doi.org/10.48550/ARXIV.1802.03888
Madlock-Brown, C., Wilkens, K., Weiskopf, N., Cesare, N., Bhattacharyya,
S., Riches, N. O., Espinoza, J., Dorr, D., Goetz, K., Phuong, J., Sule,
A., Kharrazi, H., Liu, F., Lemon, C., & Adams, W. G. (2022a).
Clinical, social, and policy factors in COVID-19 cases and deaths:
Methodological considerations for feature selection and modeling in
county-level analyses [Journal Article]. BMC Public Health,
22(1), 747. https://doi.org/10.1186/s12889-022-13168-y
Madlock-Brown, C., Wilkens, K., Weiskopf, N., Cesare, N., Bhattacharyya,
S., Riches, N. O., Espinoza, J., Dorr, D., Goetz, K., Phuong, J., Sule,
A., Kharrazi, H., Liu, F., Lemon, C., & Adams, W. G. (2022b).
Correction: Clinical, social, and policy factors in COVID-19 cases and
deaths: Methodological considerations for feature selection and modeling
in county-level analyses [Journal Article]. BMC Public Health,
22(1), 1250. https://doi.org/10.1186/s12889-022-13562-6
Mehta, H. B., An, H., Andersen, K. M., Mansour, O., Madhira, V.,
Rashidi, E. S., Bates, B., Setoguchi, S., Joseph, C., Kocis, P. T.,
Moffitt, R., Bennett, T. D., Chute, C. G., Garibaldi, B. T., & Caleb
Alexander, G. (2021). Use of hydroxychloroquine, remdesivir, and
dexamethasone among adults hospitalized with covid-19 in the united
states: A retrospective cohort study. Annals of Internal
Medicine, 174(10), 1395–1403. https://doi.org/10.7326/M21-0857
Mitra, R., McGough, S. F., Chakraborti, T., Holmes, C., Copping, R.,
Hagenbuch, N., Biedermann, S., Noonan, J., Lehmann, B., Shenvi, A., et
al. (2023). Learning from data with structured missingness. Nature
Machine Intelligence, 5(1), 13–23. https://doi.org/10.1038/s42256-022-00596-z
Morgan, R. L., Whaley, P., Thayer, K. A., & Schunemann, H. J.
(2018). Identifying the PECO: A framework for formulating good questions
to explore the association of environmental and other exposures with
health outcomes [Journal Article]. Environ Int, 121(Pt
1), 1027–1031. https://doi.org/10.1016/j.envint.2018.07.015
Narrett, J. A., Mallawaarachchi, I., Aldridge, C. M., Assefa, E. D.,
Patel, A., Loomba, J. J., Ratcliffe, S., Sadan, O., Monteith, T.,
Worrall, B. B., Brown, D. E., Johnston, K. C., Southerland, A. M., &
consortium, N. C. (2023). Increased stroke severity and mortality in
patients with SARS-CoV-2 infection: An analysis from the N3C database
[Journal Article]. J Stroke Cerebrovasc Dis, 32(3),
106987. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.106987
OHDSI. (2019). The book of OHDSI: Observational health data sciences
and informatics. OHDSI. https://ohdsi.github.io/TheBookOfOhdsi/
Palantir. (2023). Documentation: Code repositories overview. https://www.palantir.com/docs/foundry/code-repositories/overview/.
Peshawa J Muhammad Ali, & Rezhna Hassan Faraj. (2014). Data
normalization and standardization: A technical report. https://doi.org/10.13140/RG.2.2.28948.04489
Pfaff, E. R., Girvin, A. T., Bennett, T. D., Bhatia, A., Brooks, I. M.,
Deer, R. R., Dekermanjian, J. P., Jolley, S. E., Kahn, M. G., Kostka,
K., McMurry, J. A., Moffitt, R., Walden, A., Chute, C. G., Haendel, M.
A., Bramante, C., Dorr, D., Morris, M., Parker, A. M., … Niehaus, E.
(2022). Identifying who has long COVID in the USA: A machine learning
approach using N3C data. Lancet Digit Health, 4(7),
e532–e541. https://doi.org/10.1016/S2589-7500(22)00048-6
Pfaff, E. R., Girvin, A. T., Gabriel, D. L., Kostka, K., Morris, M.,
Palchuk, M. B., Lehmann, H. P., Amor, B., Bissell, M., Bradwell, K. R.,
et al. (2022). Synergies between centralized and federated approaches to
data quality: A report from the national COVID cohort collaborative.
Journal of the American Medical Informatics Association,
29(4), 609–618. https://doi.org/10.1093/jamia/ocab217
Pfaff, E. R., Madlock-Brown, C., Baratta, J. M., Bhatia, A., Davis, H.,
Girvin, A., Hill, E., Kelly, E., Kostka, K., Loomba, J., et al. (2023).
Coding long COVID: Characterizing a new disease through an ICD-10 lens.
BMC Medicine, 21(1), 1–13. https://doi.org/10.1186/s12916-023-02737-6
Redelmeier, D. A., Wang, J., & Thiruchelvam, D. (2023). COVID
vaccine hesitancy and risk of a traffic crash [Journal Article]. Am
J Med, 136(2), 153–162 e5. https://doi.org/10.1016/j.amjmed.2022.11.002
Reese, J. T., Blau, H., Casiraghi, E., Bergquist, T., Loomba, J. J.,
Callahan, T. J., Laraway, B., Antonescu, C., Coleman, B., Gargano, M.,
et al. (2023). Generalisable long COVID subtypes: Findings from the NIH
N3C and RECOVER programmes. EBioMedicine, 87. https://doi.org/10.1016/j.ebiom.2022.104413
Richesson, R. L., Hammond, W. E., Nahm, M., Wixted, D., Simon, G. E.,
Robinson, J. G., Bauck, A. E., Cifelli, D., Smerek, M. M., Dickerson,
J., et al. (2013). Electronic health records based phenotyping in
next-generation clinical trials: A perspective from the NIH health care
systems collaboratory. Journal of the American Medical Informatics
Association, 20(e2), e226–e231. https://doi.org/10.1136/amiajnl-2013-001926
Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung,
S., Aviles-Rivero, A. I., Etmann, C., McCague, C., Beer, L.,
Weir-McCall, J. R., Teng, Z., Gkrania-Klotsas, E., Ruggiero, A.,
Korhonen, A., Jefferson, E., Ako, E., Langs, G., Gozaliasl, G., … and,
C.-B. S. (2021). Common pitfalls and recommendations for using machine
learning to detect and prognosticate for COVID-19 using
chest radiographs and CT scans. Nature Machine
Intelligence, 3(3), 199–217. https://doi.org/10.1038/s42256-021-00307-0
Sahner, D., & Spellmeyer, D. C. (2020). Artificial intelligence:
Emerging applications in biotechnology and pharma. In Biotechnology
entrepreneurship (pp. 399–417). Elsevier. https://doi.org/10.1016/b978-0-12-815585-1.00028-0
Schneeweiss, S., Rassen, J. A., Brown, J. S., Rothman, K. J., Happe, L.,
Arlett, P., Dal Pan, G., Goettsch, W., Murk, W., & Wang, S. V.
(2019). Graphical depiction of longitudinal study designs in health care
databases [Journal Article]. Ann Intern Med, 170(6),
398–406. https://doi.org/10.7326/M18-3079
Schuemie, M. J., Ryan, P. B., Hripcsak, G., Madigan, D., & Suchard,
M. A. (2018). Improving reproducibility by using high-throughput
observational studies with empirical calibration [Journal Article].
Philos Trans A Math Phys Eng Sci, 376(2128). https://doi.org/10.1098/rsta.2017.0356
Schuemie, M. J., Ryan, P. B., Pratt, N., Chen, R., You, S. C., Krumholz,
H. M., Madigan, D., Hripcsak, G., & Suchard, M. A. (2020).
Large-scale evidence generation and evaluation across a network of
databases (LEGEND): Assessing validity using hypertension as a case
study [Journal Article]. J Am Med Inform Assoc, 27(8),
1268–1277. https://doi.org/10.1093/jamia/ocaa124
Shapley, L. S. (1953). 17. A value for n-person games. In
Contributions to the theory of games (AM-28), volume
II (pp. 307–318). Princeton University Press. https://doi.org/10.1515/9781400881970-018
Sharafeldin, N., Bates, B., Song, Q., Madhira, V., Yan, Y., Dong, S.,
Lee, E., Kuhrt, N., Shao, Y. R., Liu, F., Bergquist, T., Guinney, J.,
Su, J., & Topaloglu, U. (2021). Outcomes of COVID-19 in patients
with cancer: Report from the national COVID cohort collaborative (N3C).
Journal of Clinical Oncology, 39(20), 2232–2246. https://doi.org/10.1200/JCO.21.01074
Sidky, H., Young, J. C., Girvin, A. T., Lee, E., Shao, Y. R., Hotaling,
N., Michael, S., Wilkins, K. J., Setoguchi, S., Funk, M. J., &
Consortium, N. C. (2023). Data quality considerations for evaluating
COVID-19 treatments using real world data: Learnings from the national
COVID cohort collaborative (N3C) [Journal Article]. BMC Med Res
Methodol, 23(1), 46. https://doi.org/10.1186/s12874-023-01839-2
Stoudt, S., Vasquez, V. N., & Martinez, C. C. (2021). Principles for
data analysis workflows [Journal Article]. PLoS Comput Biol,
17(3), e1008770. https://doi.org/10.1371/journal.pcbi.1008770
Sun, J., Zheng, Q., Madhira, V., Olex, A. L., Anzalone, A. J., Vinson,
A., Singh, J. A., French, E., Abraham, A. G., Mathew, J., Safdar, N.,
Agarwal, G., Fitzgerald, K. C., Singh, N., Topaloglu, U., Chute, C. G.,
Mannon, R. B., Kirk, G. D., & Patel, R. C. (2022). Association
between immune dysfunction and COVID-19 breakthrough infection after
SARS-CoV-2 vaccination in the US. Archives of Internal Medicine
(Chicago, Ill. : 1908), 182(2), 153–162. https://doi.org/10.1001/jamainternmed.2021.7024
Tan, A. L. M., Getzen, E. J., Hutch, M. R., Strasser, Z. H.,
Gutierrez-Sacristan, A., Le, T. T., Dagliati, A., Morris, M., Hanauer,
D. A., Moal, B., Bonzel, C. L., Yuan, W., Chiudinelli, L., Das, P.,
Zhang, H. G., Aronow, B. J., Avillach, P., Brat, G. A., Cai, T., …
Holmes, J. H. (2023). Informative missingness: What can we learn from
patterns in missing laboratory data in the electronic health record?
[Journal Article]. J Biomed Inform, 139, 104306. https://doi.org/10.1016/j.jbi.2023.104306
U.S. Food and Drug Administration. (2017). Software as a medical
device (SAMD): Clinical evaluation/guidance for industry and food and
drug administration staff [Web Page]. FDA. https://www.fda.gov/media/100714/download
U.S. Food and Drug Administration. (2023). Considerations for the
design and conduct of externally controlled trials for drug and
biological products guidance for industry [Report]. Food; Drug
Administration. https://www.fda.gov/media/164960/download
U.S. Food and Drug Administration and the Duke-Margolis Center for
Health Policy. (2019). Developing real-world data and evidence to
support regulatory decision-making [Online Multimedia]. https://www.youtube.com/watch?v=-G6ltatA71I
U.S. Food and Drug Administration, Health Canada, and the United
Kingdom’s Medicines and Healthcare products Regulatory Agency (MHRA).
(2021). Good machine learning practice for medical device
development: Guiding principles [Web Page]. https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
Walonoski, J., Klaus, S., Granger, E., Hall, D., Gregorowicz, A.,
Neyarapally, G., Watson, A., & Eastman, J. (2020). Synthea™ novel
coronavirus (COVID-19) model and synthetic data set.
Intelligence-Based Medicine, 1-2, 100007. https://doi.org/doi.org/10.1016/j.ibmed.2020.100007
Wang, S. V., Pinheiro, S., Hua, W., Arlett, P., Uyama, Y., Berlin, J.
A., Bartels, D. B., Kahler, K. H., Bessette, L. G., & Schneeweiss,
S. (2021). STaRT-RWE: Structured template for planning and reporting on
the implementation of real world evidence studies [Journal Article].
BMJ, 372, m4856. https://doi.org/10.1136/bmj.m4856
Weiskopf, N. G., Dorr, D. A., Jackson, C., Lehmann, H. P., &
Thompson, C. A. (2023). Healthcare utilization is a collider: An
introduction to collider bias in EHR data reuse [Journal Article]. J
Am Med Inform Assoc. https://doi.org/10.1093/jamia/ocad013
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G.,
Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Silva Santos, L. B.
da, Bourne, P. E., et al. (2016). The FAIR guiding principles for
scientific data management and stewardship. Scientific Data,
3. https://doi.org/10.1038/sdata.2016.18
Yang, X., Sun, J., Patel, R. C., Zhang, J., Guo, S., Zheng, Q., Olex, A.
L., Olatosi, B., Weissman, S. B., Islam, J. Y., et al. (2021).
Associations between HIV infection and clinical spectrum of COVID-19: A
population level analysis based on US national COVID cohort
collaborative (N3C) data. The Lancet HIV, 8(11),
690–700. https://doi.org/10.1016/S2352-3018(21)00239-3
Zhou, R., Johnson, K. E., Rousseau, J. F., Rathouz, P. J., &
Consortium, N. C. (2022). Comparative effectiveness of dexamethasone in
treatment of hospitalized COVID-19 patients during the first year of the
pandemic: The N3C data repository [Journal Article]. medRxiv.
https://doi.org/10.1101/2022.10.22.22281373